jueves, 22 de mayo de 2008

SCANNER


¿Qué es un scanner y que es lo que hace?

Un scanner es un dispositivo de entrada en el ordenador. Hace una captura de una imagen, documento de texto o fotografía, y lo transfiere en bits de información, los cuales puede entender y manejar un ordenador. De la misma manera, una imagen de un documento escaneado, puede ser convertido en un formato editable con un software OCR (Optical Character Recognition).
Un scanner usa una fuente de luz para iluminar el objeto escaneado. La luz, al incidir sobre este objeto, es reflectada al CDD (Charged Coupled Device). El CDD colecta la información y convierte la señal analógica en señales digitales que después pueden ser leídos y procesados por la electrónica interna del Scanner y posteriormente por el ordenador.

Tipos de scanner mas relevantes

Los tipos de scanner que mas oiremos son:

Planos – Es el típico equipo que nos encontraremos encima de una mesa o mueble y confundiremos con una fotocopiadora. Los precios suelen variar dependiendo de la calidad de la resolución que tenga aunque podemos encontrar buenos precios si miramos bien.

De rodillo – Son pequeños y por ello bastante manejables. Escanean las imágenes como si se tratara de un FAX común. El inconveniente es que el escaneado se hace hoja por hoja pasando por una abertura, por lo que escanear libros o manuales se hace complicado.

De mano – son los mas económicos aunque los de mas baja calidad. También se les llama “portátiles” por su tamaño. Hoy en día están desapareciendo.
Existe una modalidad de impresora donde el scanner viene integrado. Son las llamadas “impresoras multifunción”.

Un factor muy importante en un scanner es la resolución. Recordemos que la resolución mide los píxeles por pulgada en la pantalla. Cuanto mas alta sea la resolución, mas calidad tendrá la imagen. Ya que vamos a escanear fotos, texto, diapositivas o imágenes, cuanto mayor sea la definición del scanner, mejor nos saldrán las copias.
Cuando compres un scanner, recuerda que deben darte el software incluido con el cual gestionarás el equipo y todas sus tareas. Si estás buscando scanners de segunda mano, en eBay tienes una larga lista de artículos de todas las marcas y precios y de total confianza.

Escáner de computadora


Un escáner de computadora (escáner proviene del idioma inglés: scanner) es un periférico que se utiliza para convertir, mediante el uso de la luz, imágenes impresas a formato digital.
Los escáneres pueden tener accesorios como un alimentador de hojas automático o un adaptador para diapositivas y transparencias.
Al obtenerse una imagen digital se puede corregir defectos, recortar un área específica de la imagen o también digitalizar texto mediante técnicas de OCR. Estas funciones las puede llevar a cabo el mismo dispositivo o aplicaciones especiales.
Hoy en día es común incluir en el mismo aparato la impresora y el escáner. Son las llamadas impresoras multifunción.







tipos de escáneres



Hay varios tipos. Hoy en día los más extendidos son los planos.
Tipos:
De rodillo. Como el escáner de un fax
De mano. En su momento muy económicos, pero de muy baja calidad. Prácticamente extintos.
Planos. Como el de las fotocopiadoras.
Orbitales. Para escanear elementos frágiles.
De tambor. Consiguen muy buena calidad de escaneo, pero son lentos y caros.
Otros tipos. Existen tipos de escáneres especializados en un trabajo determinado (por ejemplo para escanear microfilms, o para obtener el texto de un libro completo, para negativos, ...)Aunque puedan existir otros tipos, se puede decir que los más extendidos son los siguientes:




Escáner plano







También llamados escáneres de sobremesa, están formados por una superficie plana de vidrio sobre la que se sitúa el documento a escanear, generalmente opaco, bajo la cual un brazo se desplaza a lo largo del área de captura. Montados en este brazo móvil se encuentran la fuente de luz y el fotosensor (por lo general un CCD).
Conforme va desplazándose el brazo, la fuente de luz baña la cara interna del documento, recogiendo el sensor los rayos reflejados, que son enviados al software de conversión analógico/digital para su transformación en una imagen de mapa de bits, creada mediante la información de color recogida para cada píxel.
La mayoría de estos escáneres pueden trabajar en escala de grises (256 tonos de gris) y a color (24 y 32 bits) y por lo general tienen un área de lectura de dimensiones 22 x 28 cm. y una resolución real de escaneado de entre [300 y 2400 ppp,] aunque mediante interpolación pueden conseguir resoluciones de hasta 9600 ppp.
Están indicados para digitalizar objetos opacos planos (como fotografías, documentos o ilustraciones) cuando no se precisa ni una alta resolución ni una gran calidad.
Algunos modelos admiten también adaptadores especiales para escanear transparencias, y otros poseen manipuladores de documento automáticos (Automatic Document Handler) que pueden aumentar el rendimiento y disminuir la fatiga del operador en el caso de grupos de documentos uniformes que se encuentran en condiciones razonablemente buenas.
Los escáneres planos son los más asequibles y usados, pues son veloces, fáciles de manejar, producen imágenes digitalizadas de calidad aceptable (sobre todo si están destinadas a la web) y son bastante baratos, pudiéndose adquirir uno de calidad media por menos de 120 €.
La mayor desventaja de estos escáneres es la limitación respecto al tamaño del documento a escanear, que queda limitado a los formatos DIN-A5 o DIN-A4

Escáner orbital

Un escáner orbital (en inglés planetary scanner u orbital scanner) es un tipo de escáner que se utiliza para hacer copias digitales de libros o documentos que, por ser viejos o extremadamente valiosos, no se quieren deteriorar escaneándolos en otro tipo de escáner.
Estos escáneres consisten en una cámara montada en un brazo que toma fotos del elemento deseado. Su ventaja principal es que los libros no tienen que ser abiertos completamente (como pasa en la mayoría de los escáneres planos). El escaneo de volúmenes encuadernados se realiza gracias a que la fuente de luz y el sensor CCD se encuentran ensamblados a un brazo de trayectoria aérea.
En sus inicios el precio de estos escáneres era elevado y sólo se utilizaban en museos y archivos, pero en la actualidad la disponibilidad de cámaras digitales buenas y baratas han hecho que estos escáneres no resulten tan privativos.








Escáner de tambor








Los escáneres de tambor son los que más fielmente reproducen el documento original, ya que producen digitalizaciones de gran resolución (hasta 4.000 ppp en modo óptico) y calidad. Sus problemas son la velocidad de escaneo (son lentos), no son indicados para documentos de papel quebradizo porque se realiza una manipulación brusca del mismo y requieren un alto nivel de habilidad por parte del operador. Además, son bastante caros.
Utilizan una tecnología diferente a la del CCD. Los originales, normalmente transparencias (aunque se pueden escanear opacos también), se colocan en un cilindro transparente de cristal de gran pureza, que a su vez se monta en el escáner. El tambor gira entonces a gran velocidad mientras se hace la lectura de cada punto de la imagen. La fuente de luz suele ser un láser que se encuentra dentro del tambor, y el sensor un Tubo Foto Multiplicador (PMT) situado en la parte exterior del tambor.
Producen digitalizaciones de alta resolución y buena gama dinámica entre bajas y altas luces, con imágenes en colores primarios, que pueden ser convertidas en CMYK mientras el lector recorre la imagen.
Son muy caros, oscilando su precio, según modelos, entre 15.000 € y 200.000 €, por lo que suelen ser usados exclusivamente por empresas especializadas del sector de las artes gráficas (laboratorios, imprentas, editoriales, etc.).












Escáner para microfilm



Los escáneres para microfilm son dispositivos especializados en digitalizar películas en rollo, microfichas y tarjetas de apertura.
Puede ser difícil obtener una calidad buena y consistente en un escáner de este tipo, debido principalmente a que los suelen tener un funcionamiento complejo, la calidad y condición de la película puede variar y ofrecen una capacidad de mejora mínima. Son escáneres muy caros, existiendo pocas empresas que los fabriquen.






Escáner para transparencias

Los escáneres para transparencias se utilizan para digitalizar diapositivas, negativos fotográficos y documentos que no son adecuados para el escaneado directo. Pueden trabajar con varios formatos de película transparente, ya sea negativa, positiva, color o blanco y negro, de tamaño desde 35 mm hasta placas de 9 x 12 cm.
Existen dos modalidades de este tipo de escáneres:
Escáneres de 35 mm. Solo escanean negativos y transparencias, pero lo hacen a resoluciones muy altas.
Escáneres multiformato. Suelen capturar transparencias y negativos hasta formato medio o hasta formato de placas 4”x 5” o incluso 5”x 7”, tienen una resolución muy alta y un rango dinámico en ocasiones sorprendente, pero frecuentemente no permiten escanear opacos. El uso de medios transparentes por lo general produce imágenes con un buen rango dinámico, pero, dependiendo del tamaño del original, la resolución puede ser insuficiente para algunas necesidades.
La calidad obtenida es mayor que la que ofrecen los escáneres planos, aunque hay que tener cuidado con la presencia de motas de polvo o rascaduras en las transparencias, que pueden ocasionar la aparición de impurezas en la imagen digitalizada resultante.























Escáner de mano

Estos escáners son dispositivos manuales que son arrastrados sobre la superficie de la imagen a escanear. Escanear documentos de esta manera requiere una mano firme, entonces una desigual velocidad de exploración produce imágenes distorsionadas, normalmente una lucecita sobre el escáner indica si la exploración fue demasiado rápida. Normalmente tienen un botón "Inicio", el cual es sostenido por el usuario durante la exploración; algunos interruptores para configurar la resolución óptica y un rodillo, lo que genera un reloj de pulso para sincronización con la computadora. La mayoría de escáneres de mano fueron en blanco y negro, y la luz generadad por una serie de LEDs verdes para iluminar la imagen. Un típico escáner de mano también tenía una un programa que abría una pequeña ventana a través de la cual se podía ver el documento que se escaneaba. Fueron populares durante la década de 1990 y, por lo general tenían un módulo de interfaz propietario específico para un determinado tipo de computadora, generalmente una Atari ST o Commodore Amiga.












INSTALACION DE UN ESCANNER DE CAMA PLANA:
Primero se deberá de instalar el controlador y posteriormente se conectara el escanner a su periférico correspondiente.
Menú:
Teniendo el disquete ó cd de instalación, lo introducimos en el ordenador y abrimos el archivo correspondiente, o sino esperamos que inicie la reproducción automática.
Por lo general el controlador es la primera opción de la ventana que aparecerá, y esperamos a que de inicio la instalación.
Preparando la instalación:
En este caso el programa de instalación InstallShield Wizard dará inicio reuniendo los componentes que se necesitaran a lo largo de la instalación.
Inicio de la Instalación:
En esta ventana nos da la bienvenida al asistente de la instalación que nos guiara a lo largo de ella.
Informándonos que programa se va a instalar.
Lenguaje del programa a instalar:
En los programas de instalación de los escanner, podemos tener la gran ventaja de poder seleccionar el idioma en que lo vamos a trabajar.
Tipo de instalación:
Un escanner cuenta con diferentes funciones de uso, pero un usuario experto no trabaja lo mismo que un principiante.
Por esa razón existen diversas formas de instalación, ya que cada una te instala diferentes tipos de herramientas y formas de trabajar.
Ruta de instalación:
La instalación nos preguntara donde queremos colocar los archivos del programa del escanner, de la forma en que a nosotros se nos facilite su ubicación.
Ya sea en accesorios o inicio, etc.
Colocación de iconos en el escritorio:
Aun para facilitar mas la ubicación del programa que va a instalar, nos preguntara que icono queremos colocar en el escritorio.
Datos de la instalación y periférico del escanner:
Para poder dar inicio a la instalación nos dirán todos los datos que colocamos:
Idioma.
Tipo de instalación.
Ruta de acceso.
Iconos del escritorio.
Periférico (USB).
Se da inicio a la instalación:
Por fin se da inicio a la instalación, por lo general este es el proceso mas tardado de todos, se debe de tener paciencia.
Termino de la instalación:
Una vez terminada la instalación debemos de reiniciar el ordenador para que la instalación termine satisfactoriamente.
Una vez instalado y reiniciado el ordenador esta listo para entrar en uso, a continuación describimos sus partes:
Este es el modo básico en el que se puede operar el escanner, en el cual puede interactuar un usuario principiante.







Partes del escáner

Cubierta del documento
Carro:
Superficie de documentos
Tornillo de bloqueo para el transporte:

Botón operate: Cuando este botón gris está hundido hacia adentro el escáner se encentra encendido. Para apagar el escáner (no es necesario apagarlo nunca) habría que pulsar de nuevo el botón para que vuelva a su posición hacia afuera.



ADVERTENCIA: Para poder utilizar el escáner es necesario que éste se encuentre encendido antes de iniciar el servidor. Si por cualquier motivo no se detecta el escáner, la primera acción que se debería intentar sería encender el escáner de nuevo y posteriormente reiniciar el servidor.










Botón de inicio: La función de este botón depende del programa de escaneado instalado. En principio todas las funciones de escaneado deberían poder controlarse desde el programa, lo cual hace innecesario el empleo de este botón.Indicador de funcionamiento: Muestra al usuario el estado del escáner.



Este indicador puede encontrarse en cuatro estados distintos:



Verde (parpadea lentamente): Iniciando la exploración u ocuado.
Verde (fijo): Preparado para explorar imágenes.
Rojo o naranja (parpadeo rápido): Ha ocurrido un error.







Apagado: El escáner se encuentra desactivado (enciéndalo mediante el botón operate o compruebe la correcta conexión del cable de alimentación).


Conectores traseros

Conmutador del final de línea SCSI:Debe estar en la posición ON (hacia la derecha), de lo contrario el escáner no será detectado por el servidor.
Conmutador giratorio SCSI ID:Debe estar en la posición número 2, de lo contrario el escáner no será detectado por el servidor.










Conectores de interface SCSI:El izquierdo sirve para conectar el cable que va desde el servidor al escáner ( explicado posteriormente). El derecho no se utiliza.
Toma de Corriente Alterna (CA):Aquí se conecta el cable de alimentación del escáner.
Conector de opcionesNo se utiliza.



Conectar el escáner

Para conectar el escáner debe conectar el extremo del cable al conector SCSI de la izquierda, tal y como se muestra l la figura, hasta que los cierres queden fijados. El otro extremo del cable se conectará a la tarjeta SCSI del escáner situada en el servidor (mostrada en la foto de la derecha).



martes, 20 de mayo de 2008

INSTALACION DE UNA PLACA BASE:

La placa base (o placa madre, como se la designa en muchos países) es, como su nombre indica, la base a la que van conectados los demás elementos del ordenador. El sistema de placa base utilizado en la actualidad es el ATX, con sus diferentes versiones en cuanto a tamaño, que no en cuanto a prestaciones.

ATX (Advanced Technology Extended) fue introducido por INTEL en 1.995 para solucionar algunos de los problemas que hasta esa fecha se presentaban. Tiene un formato estandarizado en cuanto a tamaño (305 mm de lado x 228 mm o 244 mm de fondo) y en el agrupamiento en un panel trasero de formato estandarizado de 158.75 mm x 44.45 mm, en el que se concentran los componentes I/O de la placa base (conectores PS2 para teclado y ratón, puertos USB, puertos RS-232, puerto paralelo, etc.). También sigue un patrón en la colocación de los elementos tales como micro, memorias, northbridge y southbridge. Las versiones miniATX (284mm x 208mm) y microATX (244mm x 244mm) solo se diferencian por las medidas.

Aun a pesar de parecer reiterativo, a la hora de colocar una placa base lo primero que debemos hacer es comprobar que trae todos los elementos que indique en la sección ''Contenido'' del manual y LEER MUY ATENTAMENTE EL MANUAL DE LA PLACA.







A continuación debemos sustituir el panel posterior de la caja por el que trae la nueva placa base.















La finalidad de estos soportes (unos tornillos octogonales macho/hembra que normalmente son de latón, aunque también pueden ser de otro material) es la de sujetar la placa base a la altura indicada para las características de la caja que tengamos y evitar que la parte inferior de la placa base pudiera hacer contacto con la superficie metálica de esta en algún punto no preparado, pudiendo en ese caso ocasionar cortocircuitos con efectos no deseados, que pueden ir desde simplemente que no arranque el ordenador hasta que estropeemos la placa base.
Para una mayor comodidad y seguridad, ponemos en la placa base los principales elementos (microprocesador, memorias y disipador del microprocesador) antes de introducir la placa base en la caja. Una vez montados estos elementos, procedemos a colocar la placa base en la caja. Para ello, una forma fácil de cogerla es por el disipador del microprocesador.
































































A continuación colocamos el resto de conectores que necesitemos, tales como conectores USB de la caja, cables de sonido delanteros (si la caja dispone de ellos), las fajas de la disquetera, de los IDE (tanto discos duros como unidades de DVD) y de los discos SATA (si este es el tipo de disco duro que tenemos), tarjeta gráfica y demás tarjetas que deseemos instalar. Por último conectamos las clavijas de alimentación (tanto la de 24 pines como la de 4) y con esto ya tenemos instalada nuestra placa base. Solo nos queda enchufar la caja a la electricidad y probar el correcto funcionamiento de nuestro ordenador.
Terminada la instalación física de la placa base, comprobamos que el SETUP nos reconoce todos nuestros discos duros, unidades ópticas y disquetera. Normalmente no hay necesidad de hacer ninguna configuración en el SETUP, salvo en ocasiones cambiar la hora por la actual, ya que suelen traer la hora del sudeste asiático. Para ello, consultamos en el Manual la forma exacta de entrar en el SETUP y la disposición del mismo. También debemos consultar, en el caso de que nuestros discos duros sean SATA, cual es la configuración que debemos darle a estos en el SETUP.
Sustitución de una placa base por otra.

Puede darse el caso de que necesitemos sustituir nuestra placa base actual por una nueva (bien por avería de la anterior o por querer ampliarla).

El proceso es el mismo que se describe anteriormente (salvo, claro está, que en primer lugar debemos quitar la que ya tenemos).

Formato: Debemos comprobar que el formato cabe en nuestra caja. En una caja ATX no tendremos problemas, pero si en formato de la caja es MiniATX o MicroATX, sí que no vamos a poder instalar una placa ATX (por simple problema de tamaño).

Microprocesador: Tenemos que asegurarnos de que la nueva placa base es compatible con el microprocesador que ya tenemos, tanto en formato en marca (INTEL o AMD) como en tipo de slot y velocidad.

Memoria: Ver que la nueva placa base soporte el tipo de memorias que tenemos. A este respecto, recordar que ya no hay en el mercado placas base para módulos SDRAM, por lo que si nuestra memoria es de ese tipo, muy probablemente un cambio de placa suponga también un cambio de memorias.
COMO SE MONTA UNA FUENTE DE ALIMENTACIÓN.

Herramientas necesarias: Un destornillador pequeño de estrella.

Procedimiento: Normalmente la fuente de alimentación va fijada a la caja (gabinete) mediante cuatro tornillos de estrella (Philips).
Colocamos la fuente de alimentación haciendo coincidir los agujeros de sujeción de esta con los de la caja y apretamos bien los tornillos. Una vez que se encuentra fijada a la caja, procederemos a conectar los cables con el fin de alimentar a los distintos dispositivos del PC


En primer lugar colocamos el conector principal de la placa, que puede ser de 20 pines o de 24 pines. Las fuentes de alimentación modernas traen el conector ATX de 24 pines, pero los 4 extras se le pueden quitar para utilizar este conector con solo 20 pines. También tenemos un conector extra de 4 pines que suministra 12 v. Colocamos este conector en su correspondiente toma (no todas las placas base tienen esta toma) y ya tenemos alimentada la placa base, que se encargará de fijar las diferentes tensiones y distribuirlas entre los distintos dispositivos que se encuentren conectados a ella.







Una vez alimentada la placa base, procederemos a alimentar los diferentes elementos que nos quedan. Las fuentes de alimentación tienen varios tipos de salida.

Suelen tener uno o dos conectores pequeños para alimentar la disquetera y una una serie de molex para alimentar los discos duros y las unidades ópticas. Además, muchas fuentes tienen conectores específicos para alimentar dispositivos SATA e incluso algunas traen conectores para la alimentación de tarjetas gráficas.
como intalar un disco duroInstalar un disco duro.

Instalación de un disco duroes
muy sencillo, pero a veces se nos complica un poco si no sabemos cómo se hace
Existen 3 tipos de disco duro. Los SCSI, Serial ATA y los IDE, siendo los IDE los más comunes. Por eso, en éste manual veremos cómo se instalan éstos.

Instalación:
Una vez configurado como master tendremos que instalarlo en el gabinete. Es de lo más sencillo, pues sólo lo atornillaremos en cualquier lugar que acomode, generalmente debajo del lector de disquetes.



El cable que usaremos para conectar el disco duro a la Motherboard se llama cable IDE. Generalmente tiene 3 conectores, 2 a los extremos y uno central. Sin embargo no esta exactamente al centro y esto tiene una razón: El conector que está más alejado del centro se conectará a la motherboard y el del otro extremo al disco duro. El conector central podemos usarlo para un lector óptico o para otro disco duro que nos sirva de almacén de datos. Sólo que en ambos casos hay que configurar el dispositivo secundario como “Slave”

Otro aspecto importante que notaremos es que uno de los cables está marcado (Generalmente de color rojo) Éste dato también nos servirá.







































Configuración

Advertencia: En la BIOS radica un programa muy delicado, si no sabes que estás configurando, mejor no muevas nada.

Una vez instalado pasaremos a la configuración desde la BIOS.
(Aunque BIOS, SETUP y CMOS significan diferentes cosas, en la configuración inicial nos estamos refiriendo a lo mismo)
La BIOS es un pequeño programa que “sabe” que tenemos instalado (RAM, Discos duros, dispositivos ópticos, procesador, etc.) y al instalarle un nuevo disco duro tenemos que “informarle” qué es, aunque en la gran mayoría de las ocasiones los detecta automáticamente. Si en tu PC no te da problemas en el arranque es porque lo reconoció automáticamente. Sin embargo, si en tu caso no reconoce el disco duro, hay que configurarlo. Se accede a la BIOS pulsando teclas específicas durante el arranque, generalmente con la tecla “del” o “supr” pero en otras ocasiones F1, F2, Esc, o una combinación de teclas. Cada máquina es diferente, sin embargo en muchas ocasiones nos aparece una leyenda como “pulse (…...) para entrar a la configuración” o algo así, aunque generalmente el mensaje viene en inglés.


















Sólo deseo recordar que debemos guardar los cambios antes de salir de la BIOS















jueves, 15 de mayo de 2008

tipo de conectores para pc

TIPO DE CONECTORES PARA PC





CABLE DE DATOS


DIFERENTES TIPOS DE CABLES Y CONECTORES QUE SUELE UTILIZAR UN PC. La costumbre hace que cuando contestamos alguna pregunta relacionada con un PC digamos que compruebe tal o cual cable o que mire este o aquel conector, pero pocas veces nos paramos a pensar si la persona a la que estamos respondiendo conoce esos cables, cuales son, como son físicamente y para qué sirven. Vamos a intentar en este tutorial darles un repaso a los principales, ordenándolos en lo posible por su uso. Cables de datos: Los principales cables (también llamados a veces fajas) utilizados para la transmisión de datos son: Faja FDD o de disquetera:




Es el cable o faja que conecta la disquetera con la placa base. Se trata de un cable de 34 hilos con dos o tres terminales de 34 pines. Uno de estos terminales se encuentra en un extremo, próximo a un cruce en los hilos. Este es el conector que va a la disquetera asignada como unidad A. En el caso de tener tres conectores, el del centro sería para conectar una segunda disquetera asignada como unidad B. El hilo 1 de suele marcar de un color diferente, debiendo este coincidir con el pin 1 del conector. Faja IDE de 40 hilos:

















Las fajas de 40 hilos son también llamadas Faja ATA 33/66, en referencia a la velocidad de transferencia que pueden soportar. La longitud máxima no debe exceder los 46cm. Al igual que en las fajas FDD, el hilo 1 se marca en color diferente, debiendo este coincidir con el pin 1 del conector. Este tipo de faja no sirve para los discos IDE modernos, de 100Mbps o de 133Mbps, pero si se pueden utilizar tanto el lectoras como en regrabadoras de CD / DVD. Faja IDE de 80 hilos:















Los cables IDE80, también llamados Faja ATA 100/133, son los utilizados para conectar dispositivos ATA - PATA a los puertos IDE de la placa base. Son fajas de 80 hilos, pero con terminales de 40 contactos. Esto se debe a que llevan 40 hilos de datos o tensión y 40 hilos de masa. Estos últimos tienen la finalidad de evitar interferencias entre los hilos de datos, por lo que permiten una mayor velocidad de transmisión. A diferencia de las fajas de 40 hilos, en las que es indiferente el orden de conexión maestro / esclavo, en las fajas de 80 hilos estas deben estar en un orden establecido, estando este orden determinado por el color de los conectores, que suele ser: Azul.- En un extremo, al IDE de la placa base. Gris.- En el centro, al dispositivo esclavo. Negro.- En el otro extremo, al dispositivo Master. Estas fajas se pueden utilizar también sin problemas para conectar lectoras y regrabadoras de CD / DVD o en discos duros ATA 33 o ATA 66. Al igual que en las fajas IDE 40, el hilo 1 se marca en color diferente, debiendo este coincidir con el pin 1 del conector. Cable SATA:























Las unidades SATA (discos duros, regrabadoras de DVD...) utilizan un tipo específico de cable de datos. Estos cables de datos están más protegidos que las fajas IDE y tienen bastantes menos contactos. En concreto, se trata de conectores de 7 contactos, formados por dos pares apantallados y con una impedancia de 100 Ohmios y tres cables de masa (GND). Los cables de masa corresponden a los contactos 1, 4 y 7, el par 2 y 3 corresponde a transmisión + y transmisión - y el par 5 y 6 a recepción - y recepción +. Este tipo de cables soporta unas velocidades muchísimo más altas que los IDE (actualmente hasta 3Gbps en los SATA2), así como unas longitudes bastante mayores (de hasta 2 metros). Las conexiones SATA son conexiones punto a punto, por lo que necesitamos un cable por cada dispositivo. Faja SCSI:


Este tipo de cable conecta varios dispositivos y los hay de diferentes tipos, dependiendo del tipo de SCSI que vayan a conectar. SCSI-1.- Conector de 50 pines, 8 dispositivos max. y 6 metros max. SCSI-2.- Conector de 50 pines, 8 dispositivos max. y 3 metros max. SCSI-3 Ultra.- Conector de 50 pines, 8 dispositivos max. y 3 metros max. SCSI-3 Ultra Wide.- Conector de 68 pines, 15 dispositivos max. y 1.5 metros max. SCSI-3 Ultra 2.- Conector de 68 pines, 15 dispositivos max. y 12 metros max. Cables USB:




























Los cables USB son cada vez más utilizados en conexiones exteriores. Se trata de cables de 4 contactos, distribuidos de la siguiente forma: Contacto 1.- Tensión 5 voltios. Contacto 2.- Datos -. Contacto 3.- Datos +. Contacto 4.- Masa (GND). Dado que también transmiten tensión a los periféricos, es muy importante, sobre todo en las conexiones internas (a placa base mediante pines) seguir fielmente las indicaciones de conexión suministradas por el fabricante de la placa base, ya que un USB mal conectado puede causar graves averías, tanto en el periférico conectado como en la propia placa base. Las conexiones USB soportan una distancia máxima de 5 metros, aunque con dispositivos amplificadores se puede superar esta distancia. Los conectores estandarizados son el tipo A, utilizado sobre todo en las placas base y en los dispositivos tipo Hub, y el tipo B, utilizado en periféricos (impresoras, escáneres, discos externos...).




Existe otro conector estandarizado (hasta cierto punto), denominado Mini USB, que podemos ver en la imagen superior, utilizado por dispositivos USB de pequeño tamaño a multimedia (MP3, cámaras fotográficas y de vídeo, etc.). Los conectores USB admiten hasta un máximo de 127 dispositivos. Además de estos (que son los más habituales), no existe una reglamentación en cuanto a la estandarización de la forma y tamaño de este tipo de conectores, por lo que hay en el mercado cientos de tipos diferentes de conectores (sobre todo del tipo Mini), que en ocasiones solo sirven para una marca y modelo determinado. Cables IEEE1394 (Firewire):

Se trata de una conexión de alta velocidad, ofreciendo una velocidad en su estándar Firewire 400 algo inferior a la teórica de un USB 2.0, pero en la práctica ofrece una mayor velocidad y, sobre todo, más estable en esta que la USB. Además de una mayor estabilidad, también tiene un mayor voltaje en su salida de alimentación (hasta 25 - 30 voltios). Hay dos tipos de conexiones IEEE 1394 dentro del estándar Firewire 400, los conectores de 4 contactos y de 6 contactos. El esquema de un conector de 6 contactos sería el siguiente: Conector 1.- Alimentación (hasta 25 - voltios). Conector 2.- Masa (GND). Conector 3.- Cable trenzado de señal B-. Conector 4.- Cable trenzado de señal B+. Conector 5.- Cable trenzado de señal A-. Conector 6.- Cable trenzado de señal A+. Este mismo esquema, pero para un conector de 4 contactos seria: Conector 1.- Cable trenzado de señal B-. Conector 2.- Cable trenzado de señal B+. Conector 3.- Cable trenzado de señal A-. Conector 4.- Cable trenzado de señal A+. Como se puede ver, la principal diferencia entre uno y otro es que el conector de 4 contactos se utiliza en aquellos dispositivos que no tienen que alimentarse a través del puerto IEEE 1394. Existe un segundo estándar Firewire, llamado Firewire 800. Firewire 8000 (o IEEE 1394b) soporta una velocidad de transmisión de 800Mbps, el doble que el estándar Firewire 400. Este tipo de Firewire utiliza un conector de 9 contactos, que sigue el siguiente esquema: Conector 1.- Cable trenzado de señal B-. Conector 2.- Cable trenzado de señal B+. Conector 3.- Cable trenzado de señal A-. Conector 4.- Cable trenzado de señal A+. Conector 5.- Masa (GND) cables trenzados de señal A. Conector 6.- Masa (GND) alimentación. Conector 7.- Reservado (no se utiliza). Conector 8.- Alimentación (hasta 25 - voltios). Conector 9.- Masa cables trenzados de señal A.



































En todos los casos, el número máximo de dispositivos conectados es de 63, con una distancia máxima de 4.5 metros Una característica de los conectores Firewire es que son compatibles con Macintosh, pudiendo estar conectada una cámara o un escáner simultáneamente a un PC y a un Mac. Cables PS/2:




Los cables con conectores PS/2 son los utilizados para el teclado y el ratón. Normalmente los conectores están señalados en color violeta para el teclado y verde para el ratón. Cables UTP (RJ-45):















Son los utilizados para las conexiones de red, ya sea interna o para Internet mediante un router. Pueden ser planos (cuando los dos conectores tienen los mismos códigos de colores en el cableado) o cruzados. Puede ser de varios tipos y categorías, siendo el mas empleado el de categoría 5 (C5). Tiene en su interior 4 pares de cables trenzados y diferenciados por colores (blanco naranja, naranja, blanco verde, verde, blanco azul, azul y blanco marrón y marrón). Es importante recordar que la longitud máxima de un cable de red no debe exceder de los 100 metros. Vamos a numerar los hilos: 1 Blanco – Naranja 2 Naranja 3 Blanco – verde 4 Verde 5 Blanco – Azul 6 Azul 7 Blanco – Marrón 8 Marrón El orden estándar de colocación de los hilos, siempre con la pestaña del conector hacia abajo, seria: Estándar 568-B: 1-2-3-5-6-4-7-8, correspondiendo estos números al orden indicado en cable de red. Estándar 568-A: 3-4-1-5-6-2-7-8, correspondiendo estos números al orden indicado en cable de red.

tipo de conectores para pc